Exercise 18

For the following exercises, find the domain, range, and all zeros/intercepts, if any, of the functions.

$$
f(x)=\frac{1}{\sqrt{x-9}}
$$

Solution

$f(x)$ has a square root function, so the domain would be the set of all x where the argument is nonnegative. But since the square root is in the denominator, it also can't be zero.

$$
\begin{aligned}
& x-9 \geq 0 \quad \text { and } \quad \\
& x-9 \neq 0 \\
& x \text { and } \quad x \neq 9
\end{aligned}
$$

Therefore, the domain is $\{x \mid x>9\}$. There's a vertical asymptote at $x=9 . f(x)$ is continuous for $x>9$, so it takes on all values between

$$
\begin{aligned}
f(9.0001) & =\frac{1}{\sqrt{9.0001-9}} \approx 100 \\
f(100000) & =\frac{1}{\sqrt{100000-9}} \approx 0.003
\end{aligned}
$$

Putting in values of x even closer to 9 yields even higher values, and putting in values of x larger than 100000 yields a number even closer to zero. Therefore, the range is $\{y \mid 0<y<\infty\}$. Below is a graph of $f(x)$ versus x to confirm these results.

